Routing & Protocols

- 1. Terminology
- 2. Routing
- 3. Static Routes
- 4. Interior Gateway Protocols
- 5. Exterior Gateway Protocols
- 6. Building an ISP network

network number prefix mask (or length)

Static routes hand configured routing

- 1. tell the router which way to send packets
- 2. based upon final packet destination

2. ip route 131.108.0.0 255.255.0.0 171.65.3.4

•Terminology Interior Gateway Protocol (IGP)

- 1. RIP, IGRP, HELLO, OSPF
- 2. Primary goal is optimal connectivity
- 3. Strong distance metrics
- 4. May not have good administrative controls

Terminology Distance vector protocols

- 1. listen to neighboring routers
- 2. install routes in table, lowest distance wins
- 3. advertise all routes in table
- 4. very simple
- 5. very stupid

Terminology **Distance vector protocols** D Α G 27 シア Ε В Η Α 2 F 2 22 В С

1

1

1

sup

B

G

2

1

1

1

sup

С

D

Ε

F

G

Н 1

I1

Terminology

Link state protocols

- 1. information about adjacencies sent to all routers
- 2. each router builds a topology database
- 3. a "shortest path" algorithm is used to find best route
- 4. converge as quickly as databases can be updated

Terminology Link state protocols

router 1router 3router 2A, B, C, G, HH, ID, E, F, G, I

A - 1 - G - 2 - D

Interior Gateway Protocols Routing Information Protocol (RIP)

P only distance vector protocol slow convergence does not carry mask information reasonably simple design & configuration does not scale (maximum 15 hops) poor metrics (hop-count)

Interior Gateway Protocols Interior Gateway Routing Protocol (IGRP)

- 1. IP only
- 2. distance vector protocol
- 3. slow convergence (like RIP)
- 4. does not carry mask information (like RIP)
- 5. very simple design & configuration
 - 1. powerful proprietary metric
 - 2. load sharing across diverse links

Interior Gateway Protocols The IGRP metric

- 1. always get optimal routing
- 2. metric vector, not single value
 - 1. bandwidth
 - 2. delay
 - 3. hops
 - 4. reliability
 - 5. loading

Interior Gateway Protocols Enhanced IGRP

- 1. multi-protocol (IP, IPX, Appletalk)
- 2. fast convergence (like OSPF)
- 3. very simple design & configuration (like IGRP)
 - 1. IGRP metric
 - 2. allows load sharing across diverse links

Interior Gateway Protocols Enhanced IGRP

- 1. distance vector based protocol
- 2. NOT a Bellman-Ford protocol Uses "dual" algorithm
- 3. alternative to OSPF & I-ISIS
- 4. can be bandwidth intensive on slow links

Interior Gateway Protocols Integrated IS-IS (I-ISIS)

- 1. multi-protocol (CLNP, IP, IPX, ...)
- 2. link state protocol
- 3. fast convergence
- 4. design and architecture moderately complex
- 5. configuration may be simple

Interior Gateway Protocols Open Shortest Path First (OSPF)

1. IS - IS = 0

Interior Gateway Protocols Open Shortest Path First (OSPF)

- 1. IP only
- 2. link state protocol
- 3. fast convergence
- 4. design and architecture very complex
- 5. configuration can be simple

Interior Gateway Protocols Which to use?

- 1. Your interior network is actually VERY simple.
- 2. Your IGP should only carry your routes and your direct customers'

Interior Gateway Protcols Problems with "classic" protocols

- 1. slow convergence
- 2. count to infinity
- 3. no mask information
 - 1. no CIDR
 - 2. no VLSM
 - 3. no subnet 0

Interior Gateway Protocols

- Slow convergence
- 1. advertisement period
 - 1. entire routing table dumped every n seconds
- 2. timeout period
 - 1. usually 3 times advertisement period
- 3. RIP values are normally 30 and 90 seconds!

Interior Gateway Protocols Count to infinty problem

Interior Gateway Protocols Count to infinity: split-horizon

- 1. Don't feed selected route back to source
 - 1. no feedback on source interface
 - 2. no feedback to source neighbor

Interior Gateway Protocols Count to infinity: split-horizon

Interior Gateway Protocols Count to infinity: hold-down

- 1. Split horizon not sufficient!
- 2. Holddown period
 - 1. interval during which "less attractive" updates are ignored

Interior Gateway Protocols Count to infinity: hold-down

Interior Gateway Protocols The universal rule

You will always trade bandwidth for speed of convergence

Interior Gateway Protocols OSPF configuration

1. myth

1. OSPF is hard to use

2. reality:

1. router ospf 1 network 192.111.107.0 0.0.0.255 area 0

Interior Gateway Protocols OSPF operation

- 1. every OSPF router sends out 'hello' packets
- 2. hello packets used to determine if neighbor is up
- 3. hello packets are small easy to process packets
- 4. hello packets are sent periodically (usually short interval)

Interior Gateway Protocols OSPF operation

- 1. once an adjacency is established, trade information with your neighbor
- 2. topology information is packaged in a "link state announcement"
- 3. announcements are sent ONCE, and only updated if there's a change
 - 1. (or every 45mins...)

Interior Gateway Protocols OSPF operation

- 1. change occurs
- 2. broadcast change
- 3. run SPF algorithm
- 4. install output into forwarding table

Interior Gateway Protocols making OSPF scale

- 1. each link transition causes a broadcast and SPF run
- 2. OSPF can group routers to appear as one single router
- 3. OSPF areas

Interior Gateway Protocols OSPF areas (before)

Interior Gateway Protocols OSPF areas (after)

Interior Gateway Protocols OSPF areas - partitioning

Interior Gateway Protocols OSPF areas - partition repair

Interior Gateway Protocols OSPF areas

- 1. rule of thumb: no more than 150 routers/area
- 2. reality: no more than 500 routers/area
- 3. backbone "area" is an area
- 4. proper use of areas reduce bandwidth & CPU utilization

Interior Gateway Protocols EIGRP operation

- 1. design goals were
 - 1. make it as fast as OSPF & IS-IS
 - 2. make it trivial to configure
 - 3. easy migration from IGRP

Interior Gateway Protocols EIGRP operation

1. router eigrp 1 network 192.108.0.0 mask 255.255.0.0

Interior Gateway Protocols EIGRP operation - caveats

- 1. nothing is for free
- 2. EIGRP works best on high speed links
- 3. EIGRP doesn't scale well in high-meshed frame-relay networks
 - 1. star networks OK

Interior Gateway Protocols summarization

1. classful routing protocols naturally summarize to network numbers at boundaries

Interior Gateway Protocols summarization

1. classless routing protocols summarize at arbitrary bit boundaries

Interior Gateway Protocols route filtering

- 1. pseudo-security (bad idea!)
- 2. low bandwidth links
- 3. eliminate unnecessary information

Interior Gateway Protocols route filtering

Interior Gateway Protocols redistribution

- 1. you run OSPF
- 2. your neighbor runs RIP

Interior Gateway Protocols redistribution

- 1. run RIP on their interface
- 2. router rip network 192.111.107.0
- 3. configure OSPF to redistribute RIP
- 4.router ospf 1
 network 135.111.104.0
 0.0.0.255 area 0
 redistribute rip metric 10

1. bi-directional redistribution MUST be filtered!

Interior Gateway Protocols redistribution

- 1. router rip network 192.111.107.0
- 2. router ospf 1
 network 135.111.104.0 0.0.0.255
 area 0
 redistribute rip metric 10
 distribute-list 1 out rip
- 3. access-list 1 permit 192.111.107.0 0.0.0.255

Exterior routing

- 1. Terminology
- 2. What is exterior routing?
- 3. Routing protocols
- 4. Overview of BGP
- 5. Putting it all together
- 6. Further information

Terminology

Autonomous System

- 1. A set of networks sharing the same routing policy.
- 2. Internal connectivity
- 3. One contiguous unit
- 4. Identified by "AS number"
- 5. Examples
 - 1. service provider
 - 2. multi-homed customer
 - 3. anyone needing policy discrimination

Routes learned from other autonomous systems

Paul Traina / INET '95 53 Developing Countries Workshop

Terminology **Exterior Gateway Protocol** egp vs EGP EGP, BGP, IDRP **Primary goal is to provide reachability** information outside administrative domain **Secondary goal is administrative control** Metrics may be arbitrary or weak

Terminology Natural network mask **Classful mask** Gass A = 8 bitsnetworks 1...127 ϵ lass B = 16 bits networks 128.0...191.255 Gass C = 24 bitsnetworks 192.0.0...223.255.255

Terminology DMZ network

de-militarised zone area between North and South Korea shared network between ASs before, neither AS carried it in IGP now, both carry it in IGP

Terminology DMZ network

Why do we need exterior routing? Why not make entire internet a single cloud?

separate policy control filtering on networks doesn't scale well service provider selection given multiple choices everything must scale to hundreds of thousands of routes

- 1. static routes
- 2. multiple IGP instances
- 3. OSPF inter-domain routing
- 4. EGP
- 5. IDRP
- 6. BGP version 4

Exterior Routing Static routes

no path information
very versatile
low protocol overhead
high maintenance overhead
very very very bad convergence time
requires manual configuration

